
Una introducción a la teoría descriptiva de conjuntos
Autor: Uzcátegui Aylwin, Carlos , Di Prisco, Carlos Augusto
Número de Páginas: 169Una introducción a la teoría descriptiva de conjuntos se destaca por sus conexiones con otras ramas de las matemáticas, especialmente el análisis matemático. La teoría descriptiva de conjuntos puede definirse como la teoría de los conjuntos definibles de números reales. La teoría clásica se refiere a los subconjuntos de ℝ que se obtienen a partir de los conjuntos abiertos a través de las operaciones de complementación, uniones numerables y proyecciones. Esta fue la idea adoptada por Lebesgue al iniciar un estudio de las funciones reales “definibles analíticamente” que luego fue desarrollada por Suslin y Luzin. El texto se inicia con una presentación de las propiedades básicas del espacio de Baire, el espacio de todas las sucesiones de números naturales con la topología producto, que es homeomorfo al conjunto de los números irracionales con la topología heredada de ℝ. Continúa con un estudio de los espacios polacos en general, de sus subconjuntos borelianos y analíticos y de sus subconjuntos proyectivos. Se presta atención a algunos problemas de uniformización y se presenta una demostración de que todo conjunto coanalítico del plano contiene una...